Standard Cutting Conditions and Infeed Methods

Standard cutting conditions

Work material	Hardness	Cutting speed: vc (SFM)					
Work material	Haruness	AH725 T313V		NS730	TH10		
On the superbooks	< 200HB	260 ~ 590	330 ~ 650	500 ~ 650	-		
Carbon steels	> 200HB	200 ~ 525	330 ~ 500	330 ~ 560	_		
Stainless steels	-	160 ~ 425	230 ~ 425	_	_		
Cast irons	-	-	230 ~ 500	_	230 ~ 300		
Non-ferrous metals	-	-	-	-	330 ~ 1650		
Heat-resisting alloys	_	_	_	_	30 ~ 130		
Hard materials	50 ~ 60HRC	_	_	_	30 ~ 100		

Threading Guidelines

Determine the infeed per pass and number of threads whilst referring to the table and description below.

Pitch	.020	.031	.042	.050	.063	.071	.083	.100	.125	.143	.167	.182	.200~
No. of threads	48	32	24	20	16	14	12	10	8	7	6	5.5	5 ~
No. of passes	4 ~ 6	4 ~ 7	4 ~ 8	5 ~ 9	6 ~ 10	7 ~ 12	7 ~ 12	8 ~ 14	10 ~ 16	11 ~ 18	11 ~ 18	11 ~ 19	12 ~ 24

Note:

- · When using the full-profile insert, set the total infeed amount by taking the finish stock of 0.1mm into account.
- Set the first infeed to 150 ~ 200% of nose R and do not allow it to exceed 0.5 mm.
- The infeed amount during the final pass must be a minimum of 0.05 mm. No zero cuts should be made. (Extra small infeed or

zero cutting of work hardened surfaces will reduce tool life.)

- The partial-profile insert or inside diameter insert has small nose R. Reduce the infeed per pass and increase the no. of passes.
- Regarding standard infeed per passes and no. of passes, please refer to our catalogue.

Infeed Methods for ST-type Tools

Infeed method	Features					
Straight infeed (radial infeed)	 Most simple and usual method Suitable for relatively small pitch threads of easily machinable material. Chip contact length on right and left is longer, causing chattering, with increased load on the nose end. When the half included angle is not symmetrical to the right and left, infeeding in the direction of 1/2 of the included angle will ensure equal machining with right and left cutting edges. 					
Single edge infeed (flank infeed)	 Suitable for large pitch threads or easy to tear materials. Effectively prevents chattering. Chips are discharged in one direction only. Satisfactory chip control. Edge on the right (with zero infeed) tends to be worn heavily. 					
Modified single-edge infeed (flank infeed)	 Suitable for large pitch threads or easy to tear materials. Effectively prevents chattering. Chips are discharged in one direction only. Satisfactory chip control. Edge on the right performs some cutting, therefore wear of this edge can thus be suppressed. 					
Alternating flank infeed	 Suitable for large pitch threads or easy to tear material. Effectively prevents chattering. Chips are discharged alternately in right and left directions, resulting possibly in entanglement. Right and left edges are used alternately, ensuring uniform wear and extending tool life. 					