Standard Cutting Conditions and Infeed Methods # **Standard cutting conditions** | Work material | Hardness | Cutting speed: vc (SFM) | | | | | | |-----------------------|------------|-------------------------|-----------|-----------|------------|--|--| | Work material | Haruness | AH725 T313V | | NS730 | TH10 | | | | On the superbooks | < 200HB | 260 ~ 590 | 330 ~ 650 | 500 ~ 650 | - | | | | Carbon steels | > 200HB | 200 ~ 525 | 330 ~ 500 | 330 ~ 560 | _ | | | | Stainless steels | - | 160 ~ 425 | 230 ~ 425 | _ | _ | | | | Cast irons | - | - | 230 ~ 500 | _ | 230 ~ 300 | | | | Non-ferrous metals | - | - | - | - | 330 ~ 1650 | | | | Heat-resisting alloys | _ | _ | _ | _ | 30 ~ 130 | | | | Hard materials | 50 ~ 60HRC | _ | _ | _ | 30 ~ 100 | | | ### **Threading Guidelines** Determine the infeed per pass and number of threads whilst referring to the table and description below. | Pitch | .020 | .031 | .042 | .050 | .063 | .071 | .083 | .100 | .125 | .143 | .167 | .182 | .200~ | |----------------|-------|-------|-------|-------|--------|--------|--------|--------|---------|---------|---------|---------|---------| | No. of threads | 48 | 32 | 24 | 20 | 16 | 14 | 12 | 10 | 8 | 7 | 6 | 5.5 | 5 ~ | | No. of passes | 4 ~ 6 | 4 ~ 7 | 4 ~ 8 | 5 ~ 9 | 6 ~ 10 | 7 ~ 12 | 7 ~ 12 | 8 ~ 14 | 10 ~ 16 | 11 ~ 18 | 11 ~ 18 | 11 ~ 19 | 12 ~ 24 | #### Note: - · When using the full-profile insert, set the total infeed amount by taking the finish stock of 0.1mm into account. - Set the first infeed to 150 ~ 200% of nose R and do not allow it to exceed 0.5 mm. - The infeed amount during the final pass must be a minimum of 0.05 mm. No zero cuts should be made. (Extra small infeed or zero cutting of work hardened surfaces will reduce tool life.) - The partial-profile insert or inside diameter insert has small nose R. Reduce the infeed per pass and increase the no. of passes. - Regarding standard infeed per passes and no. of passes, please refer to our catalogue. ## **Infeed Methods for ST-type Tools** | Infeed method | Features | | | | | | |--|---|--|--|--|--|--| | Straight infeed (radial infeed) | Most simple and usual method Suitable for relatively small pitch threads of easily machinable material. Chip contact length on right and left is longer, causing chattering, with increased load on the nose end. When the half included angle is not symmetrical to the right and left, infeeding in the direction of 1/2 of the included angle will ensure equal machining with right and left cutting edges. | | | | | | | Single edge infeed (flank infeed) | Suitable for large pitch threads or easy to tear materials. Effectively prevents chattering. Chips are discharged in one direction only. Satisfactory chip control. Edge on the right (with zero infeed) tends to be worn heavily. | | | | | | | Modified single-edge infeed (flank infeed) | Suitable for large pitch threads or easy to tear materials. Effectively prevents chattering. Chips are discharged in one direction only. Satisfactory chip control. Edge on the right performs some cutting, therefore wear of this edge can thus be suppressed. | | | | | | | Alternating flank infeed | Suitable for large pitch threads or easy to tear material. Effectively prevents chattering. Chips are discharged alternately in right and left directions, resulting possibly in entanglement. Right and left edges are used alternately, ensuring uniform wear and extending tool life. | | | | | |